U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER S ERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 154

AFOS Graphics Created by NMC

Joel Nathan
Automation Division

JUNE 1977

This is an unreviewed manuscript, primarily
intended for informal exchange of information
among NMC staff members.

Section I - Formation of Scrambled AFQS File

The purpose of this Office Note is to document in detail NMC's procedure
which produces AFOS graphics in vectorized code from the existing scan line
format which produces the automated FAX/VARIAN maps. The first and most
important aspect of this procedure is the "scrambled AFOS file', which the
CNTIR package produces. This file contains pieces of contours in delta-X,
delta-Y format that are output onto a file as the CNTR program scans through
a line in the map. The vectors have a label attached to them so that they
may be identified as belonging to a certain contour. The starting position
of these contours are output along with their value. The processing code
pieces the vectors together to form AFOS contours.

The scrambled AFOS file is output using direct access I/0 with a record size
of 128 (4-byte) words. The last word of each record contains the record
number and the first word contains the number of the next record in the
sequence. The very first record is an identification record. (Please keep
in mind that each FAX/VARIAN map may consist of as many as three meterological
fields. Each of these fields represents a complete map when being displayed
on AFOS, so each FAX/VARIAN map will represent ome, two or even three AFOS
maps.) Word six of the I. D. record will contain the record number of the
first record in the sequence which contains the actual vector data for field
one. If there are two or three fields, their respectlve starting locations
will be contained in words seven and° eight. -The next availablée words will
contain unique subset numbers for each field. These numbers will be matched
with the proper labels contained in the alpha-numeric file.

For each field there is a set of three identification records. The first

of these records contains the starting position of each contour. The next
record contains a flag that points to the position in the vector file where
the vector search for each contour shall begin. And the third record contains
the actual value for each contour. The very last record in this set will
contain a number that will point to a record that will either contain an end
of maps message or will start another identification chain if there are more
maps to be processed.

Since there are only 128 words in the record, we are limited to processing 128
contours. This 1limit is sufficient for most maps; however there are instances
where we need to be able to process more contours. This is accomplished in the
following manner. Looking back to the very first identification record there
may be flags in the words immediately following the subset numbers which point
to supplemental identification records, allowing us to have an additional 128
contours. These supplemental records are organized just as the others, and the
vectors that they refer to are merged with the vector file. This completes the
explanation of the scrambled AFOS file, but for a more detailed description of
the vector file refer to Appendix I.

Section II - Processing of Scrambled AF0S File

This section describes the process of unscrambling the contour file explained
in section one. It further explains how label information is merged in with
the contours and output in an acceptable AFOS format. The first thing we

need to do is read in all the records in the scrambled AFOS file for one AFOS
map. Then we read in all the alpha-numeric data for the same map. This data
contains identification information, contour labels, and titles. The subset
number is contained in word two of the alpa-numeric file (see Appendix two for
a description of this file.) We check to see if this number matches the subset
number in the scrambled A¥0S file. If they match, we check our master file

of subset numbers for this entry and match it with its proper AFOS PIL number.
We save this number along with the date (located in words five and six) because
they must be put into the header for transmission. Each FAX/VARIAN map has a
particular background associated with it. For FAX/VARIAN these backgrounds
are generated with different orientations. For instance, the standard LFM
background is generated with verticle longitude of 105° W, and the standard

PE background is 80° W. However, in the current AFOS system we have a very
limited number of backgrounds in existence, and they are all generated with
verticle longitude of 100° W. Therefore, we must rotate the data to fit the
background. The data also must be scale and offset to the background. These
constants are determined by the particular background (contained in words 16
and 17) used for FAX/VARIAN. Now we actually start forming the alpha-numeric
information by first issuing an instruction to get into character mode. The
file contains EBCDIC data (labels and titles) along with its I, J coordinates.
(see writeup of Appendix II for detailed description of the alpha-numerié-.file.)
This data is transformed into ASCII text to meet AFOS requirements. The
starting position of a string of data across the display is rotated, scaled,
and offset with the constants referred to above. Succeeding characters in the
string are displayed horlzontally from the starting position across the screen.
When a new string is found we output a new starting location followed by the
character information, each character representing one byte of data. (See
writeup of Universal Graphics Format for details of coding requirements.)

Now that the character information is done we must start. forming the contours.
We issue an instruction to get us into relative vector mode (see writeup of
UGF.) There are several different coding techniques that are available; how-
ever, relative vectors is currently the only method that we are using for
operational AFOS products. (See Appendix three for a more detailed discussion
of all the formats). For each contour we have an initial position I, J which
we rotate, scale and offset as above. We then go through the scrambled AFO0S
file and piece the vectors together. The logic is similar to that mentioned
in Appendix one. Each vector that is output is a relative vector, i.e. it is
a displacement value from the previous point. The relative vectors are one
(two-byte) word in length with six bits of actual data plus a sign bit for each
delta. The hlgh order bit for each delta is currently not used. All the
relative vectors for one contour are placed in an intermediate array and are
passed to a compression subroutine along with the vector count and the initial
position. This routine examines in groups of three all the points along the

contour formed by the vectors. It then tests for the curvature of the vector

to see if the middle point along the contour can be eliminated. Then the two
shorter vectors connectlng three points can be replaced with one vector using
two points. However, since the length of our vectors is only six bits, the
longest vector we may have is 63 pixels. After the entire contour is compressed
we return with the new vector count. We repeat this procedure for each contour
until they. are all processed.

We are now left with a message of alpha-numeric data followed by contour data.
There are certain AFOS transmission formats that require us to block the data
in a particular way. Each AFOS block consists of 256 bytes of actual data plus
header and trailer information. (See Appendix four for details of communications.)
The message is blocked into the proper format with header and trailer informa-
tion and-returned with the new byte count. NMC's interface operation, which
transfers the message from. the 360/195 to the 360/40, requires the data to be
~output in blocks that are 1280 bytes long. Therefore, five AFOS blocks will
fit exactly into one communications block. The processing program is thus
required to output the completed message in 1280-byte blocks to some disk area
on the 360/195. Then the program begins another map and starts the process
over again. Meanwhile the AFOS message gets called up through the interface

~ to . the 360/40, and from there is passed through the interdata and then to the
NOVA at Suitland. Flnally the message is transmitted to the NOVA at Gramax and
. stored at the AFOS facility. ©Now the map can be displayed by simply punching
in the proper PIL number. The background is already stored at the facility and
will automatically be identified when the appropriate PIL number is called up.
To display a FAX/VARIAN map that has two or more fields, we display one field
by calling up its PIL number and then use the overlay feature to call up the
other fields. Hopefully the preceeding discussion will be of a331stance to any
user that wants to produce AFOS maps from an existing system that is in scan
line format.

- Appendix I - Formation of Vector File

The vector file is divided into 128-word records that are linked together with
identification numbers as described in section one. Each word in the vector
file is divided from left to right in the following manner:

Byte one is the command byte. The command byte identifies this word as a
starting point, a finishing point, or an intermediate point. If it is a
starting point, it also determines whether it is a forward search or a back-
wards search. And it could also tell us in the middle of a search that we are
to reverse directions. This may sound complicated now, but. it will become
clearer as I explain how it works with the other parts of the word.

Byte two contains the line label, and it 1dent1f1es each word as belonging to
a particular contour.

Bytes three and four contain respectively the delta-x, delta-y relative vectors.

It is probably easiest to explain how the file works.by taking a contour and
.following the logic necessary to piece it together. 1In the second identifi-
cation record we have the flags that tell us where to begin our vector: search.
In words one through 128 we have a value,. X, that tells us to look at the xth
word in the vector file. In the second byte of this word we will find the

~ line label which has permissable integer values of one through 127. This line
label value corresponds to the particular word in the identification record
that contains the value X. 1In other words suppose word six of that identifi-
cation record contains the value four. Then the second byte of word four in the
vector file has as its value five, and five is defined as the line 1abe1 for
-this particular contour.

Now that we have identified the contour, we must examine the command byte
_(byte one) in order to determine how to begin our search. Suppose the command
byte is four or twelve. This tells us that we have a forward vector search,

and we scan forward through the file, starting at word five, looking for words
with a line label of five, when we find a word with the correct line’ label, we
again examine the command byte. If the command byte is 128, then we have found
a word that has a vector value and is a piece of the contour. Bytes three and
four contain the respective displacement values in the x and y direction from
the previous position. Then we continue our search as before.

If we encounter a command byte value of two, then we must reverse our search.
The value contained in byte four of this word is the new line label that we
will be looking for as we reverse our search.

Looking back to when we started, suppose our original command byte was ten.
In this case we would have a backwards search through the vector file. The
search continues and will only be reversed if we find a command byte of four.
If we are in a forward search, we will stop when we find a command byte of
ten. For a backwards search the value is twelve.

In the case of a closed contour we would change direction several times and
eventually we would point back to the same line label with which we began.

Closed contours will begin with the command byte value of four, which takes
us on a forward search. This contour will end with a command byte of four

also, as long as the value of the new line is the same as the original.

The above description of the AF0S vector file, coupled with the discussion

in section one, will give the user a good grasp of how AFOS contours are de-
rived from FAX/VARIAN scan line format.

Appendix II — Formation of Alpha—-Numeric File

Each AFOS map has a set of alpha-numeric data associated with it. Each map
will have at least two records of data. The first one is a 50 .word identifi-
cation record that is flagged with the integer value of -1, in the first word.
(See my memo of April 21, 1977 for a detailed description of this I. D. record.)

The succeeding records are 2048 words long and consist of actual label
information in EBCDIC that is to be plotted on the map. As many records

as are needed to supply all the label information are output. A record
with word one equal to -7 signals the end of data for a particular map.

The label records are actually divided into groups of two with the first
word containing the I, J position, and the second word containing the label
information. The actual two-word format is as follows:

lst Word
J (in scan lines) (15 bits)
Temporary character—change function (1 bit)
Priority (3 bits)
I (in dots) (13 bits)
2nd Word
Index to character set (8 bits)
EBCDIC text (24 bits)

The temporary character-change function and the priority are not used for
AFOS. Also the index to the character set is ignored currently, but with the
addition of more AFOS character sets it will be utilized.

Appendix III - Other AFOS Graphics Formats

There are several methods of encoding AFOS graphics available to us. These
methods enable us to strive for maximum data compression. Besides the

relative vector mode that we are currently using, there is also the absolute
vector. This is simply a line between points. Given any set of tyg points

a line can be drawn between them, and this can be repeated up to 27 -1 times.
This is not a very practical method for contours that are constantly changing
direction, but for long, straight lines, such as the latitude and longitude
lines on a background, this is an excellent method for maximum data compression.

Another method is the CPC (compressed pen command) string which assembles
three-bit vectors into long strings to represent contour lines. The technique
for drawing these lines is based on a fixed length vector which has eight
possible directions of motion from any point.

CPC VECTORS

1

We have not dome much experimentation with this method directly, however

it is used as the first step in the process of forming the VEV (variable
exception vector.) In this method a line is drawn based on the restriction
that the maximum change in direction is +45°. There is an excellent dis-
cussion of how:this can be done in the writeup of the '"Variable Compact
Vector Module for the NEDS—] Display System" prepared for Fleet Numerical
Weather Central. Once the CPC string has been smoothed it is possible to
transfer it into a VEV string, which has a variable length of .01, .02,
.03, or .04 inches, which is fixed for all of the vectors in the string.
Along with the vector length we are given an initial direction vector which
is the same as the CPC vector. We find this by adding the first three
smoothed CPC vectors (see section 2.2.2.3 of NEDS writeup;) Once the IDV
has been determined, the smoothed CPC string is processed in increments of
up to 256 vector steps to compute the VEV string. The smoothed CPC string
insures that the maximum deviation'of adjacent vectors is +45°, that is a
vector can turn either up or down 45 degrees from the format direction of
motion or continue in the same direction. We can reduce the number of bits
needed to describe the vector from three to one. This is accomplished by
keeping a bit count (add or even) of the string, as well as the position and
differences between the CPC and VEV strings. Introducing odd and even vectors
allows us to do the following:

Even—-numbered vectors are allowed to either continue in the same direction

as the previous vector or change direction counterclockwise 45 degrees (+45°).
Odd-numbered vectors are allowed to either continue in the same direction or
change direction clockwise 45 degrees (-45°). A vector which continues in
the same direction is called a trend vector and assigned a value of 0, and
one that changes +45° is an exception vector, and is assigned a value of 1.
By keeping track of the vector count and the CPC and the direction of motion
we can make a decision whether to use a trend vector or exception vector to
best follow the path of the CPC string.

It is very easy for the VEV to get off the CPC track, since it can't always
turn at the proper time. Additionally, it is difficult for the VEV to make
sharp turns. Minor deviations are expected, but the maximum difference allowed
is four vector steps. When this happens this string is closed off and a

long vector is drawn from the last position to the correct position. At one
time we were encoding our products with the expectation that VEV would be the
only accéptable format in the final AFQOS system. Our experience shows that
using a vector length of .01 inch we could not achieve nearly the data
compression that we did with the relative vector with a simple curvature test
for compression. Furthermore, the relative vector produced a smoother and more
accurate product. However, the VEV is fully utilized only when used as a
variable length vector, and it is entirely possible that the results would

be much better if we varied the vector length.

-7

In our current AFOS products we are using only relative vectors. This is
because we found it to be the easiest and fastest way to convert from our
current system. However, we expect that in the future we will incorporate
several of these methods to afford us the maximum in data compression with
the minimum of product distortion.

The following is the

APPENDIX IV - NMC-AFOS Co@;ications Block Formats

communications format for AFOS graphics data (All values are in hexadecimal):

14
Byte # 1 2 3 4 56 7 8910 [11 12 1311516 | 17 18 19 20 21 22
Header ' .
Symbol SOH XSN | MID MAD TPM cC¢gC NNN XXX [Mo Da Hr Mn | N1 LRC
For :
1st Definition| Start |[Tx | Message|Message|Type,| Station Product | PIL Date in month,| # red.
: of seq| I. D. address|Prty, | identifier|category | number [Day, Hour, lines chk.
Block header |# # # Mode Minute
 ' Va1ue 01 00 [40 00 |00 0O (00O 4E 40 43 |47 50 48 | Unique |Binary Value | 00 00
' value
Header - Byte # 1 2 34 Header | Byte # 1 2 34
for for :
Blocks .| Symbol SOH XSN MID Last Symbol SOH XSN MID
2 to N-1 Block
Value 01 00 00 00 Value 01 00 80 00
Byte # 255 256 _Byte pP-2 P-1 P
Trailer Trailer ,
for Symbol ETB BCC for Symbol DLE ETX BGC
Blocks Last
1 to N-1| Definition End of Block Block Definition Filler End of Block
Block Check (If necessary) message | check
Value 17 00 Value 10 83 00

P represents the last byte of the message.

Since the message must have an even number of bytes, the filler:character
is necessary.

The following characters have special meaning and can not appear as actual
data:

DLE (10)
ETX (83)

Therefore, if a byte of data is encountered with either of the above values,
it is replaced as follows:

DLE is replaced by DLE DLE (1010)
ETX is replaced by DLE FF (1000).

